If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-32=11
We move all terms to the left:
c^2-32-(11)=0
We add all the numbers together, and all the variables
c^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $
| 0.64·x=170 | | 6n+5(1-6n(=2(1-13n)+13 | | 19-3=2+r | | c^2-32=11. | | b/4-5=-7 | | 3-2(x+1)=5 | | 12.95=3.1b+5.2 | | 2x+20=3x10 | | 9+y^2=400 | | 4^x=2^5•8^3 | | -2r/5=12 | | 9-y^2=400 | | 4u=3u-6 | | 10+8n=-(2n+4)+8n | | 0.5a−0.3a=5 | | -440=-8(6+7a) | | 5w-11=7w+19 | | a/9=2/3 | | 6x-6-5x-7=x+6 | | 7x+12+32=80 | | F(x)=5x2+-8 | | F(x)=3x^2-2x-9 | | -x9=-8 | | 12(8-6x)=x | | 14.74=3.4+5.4x | | 0.5s+1=7+4.5s0.5s+1=7+4.5s0 | | 14.75=3.4+5.4x | | 9-(x-2)+3x=21 | | 35x+10+45=90 | | 4(11-x)=44 | | -6=y^2-11y | | 2(4-3x)+`5(2x-3=20-5x |